Systematic methodology to estimate apparent losses due to water meters inaccuracies
Arregui F.J.
*farregui@ita.upv.es. Instituto Tecnológico del Agua. U. Politecnica de Valencia. Camino de Vera s/n. 46022 Valencia. Spain

This presentation was made by Francisco Arregui at the World Water Congress and Exhibition in Busan in September 2012.

The author has confirmed that he is entitled to grant this permission for copies to be made available free of charge for reading and/or downloading from the LEAKSSuite website.
Systematic methodology to estimate apparent losses due to water meters inaccuracies

Francisco Arregui
farregui@ita.upv.es
IWA - Water balance

Systematic methodology to estimate apparent losses – F. Arregui

Water Losses

- Authorized Consumption
- Unbilled Authorized Consumption
- Billed Authorized Consumption

- Unbilled Consumption
- Billed Unmetered Consumption
- Unbilled Metered Consumption
- Unbilled Unmetered Consumption

Water Balance

- Authorized Consumption
- Unbilled Authorized Consumption
- Billed Authorized Consumption

Non-Revenue Water

- Unauthorized Consumption
- Customer Meter Inaccuracies
- Billing & Accounting Errors
- Leakage on Transmission and/or Distribution Mains
- Leakage and Overflows at Utility’s Storage Tanks
- Leakage on Service Connections

Revenue Water

System Input Volume

- Water Losses
- Real Losses
- Apparent Losses

Authorized Consumption

- Billed Exported Consumption
- Billed Metered Consumption
- Billed Unmetered Consumption

Authorized Consumption

Customer Meter Inaccuracies

Billing & Accounting Errors

Leakage on Transmission and/or Distribution Mains

Leakage and Overflows at Utility’s Storage Tanks

Leakage on Service Connections
<table>
<thead>
<tr>
<th>System Input Volume</th>
<th>Authorized Consumption</th>
<th>Billed Authorized Consumption</th>
<th>Unbilled Authorized Consumption</th>
<th>Billed exported consumption</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Losses</td>
<td></td>
<td>Apparent Losses</td>
<td>Unbilled Authorized Consumption</td>
<td>Unbilled Metered Consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unbilled Unmetered Consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Unauthorized Consumption</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Customer Meter Inaccuracies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Billing & Accounting Errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leakage on Transmission and/or Distribution Mains</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leakage and Overflows at Utility’s Storage Tanks</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leakage on Service Connections</td>
</tr>
<tr>
<td>Revenue Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non Revenue Water</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IWA - Water balance

Water Losses

<table>
<thead>
<tr>
<th>System Input Volume</th>
<th>Authorized Consumption</th>
<th>Billed Authorized Consumption</th>
<th>Unbilled Authorized Consumption</th>
<th>Apparent Losses</th>
<th>Real Losses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Water</td>
<td>Billed exported consumption</td>
<td>Billed Metered Consumption</td>
<td>Billed Unmetered Consumption</td>
<td>Unauthorized Consumption</td>
<td>Customer Meter Inaccuracies</td>
</tr>
<tr>
<td></td>
<td>Unbilled Metered Consumption</td>
<td>Unbilled Unmetered Consumption</td>
<td>Billing & Accounting Errors</td>
<td>Leakage on Transmission and/or Distribution Mains</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leakage and Overflows at Utility’s Storage Tanks</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Leakage on Service Connections</td>
<td></td>
</tr>
</tbody>
</table>
IWA - Water balance

System Input Volume

- Authorized Consumption
- Unbilled Authorized Consumption
- Billed Authorized Consumption

Water Losses

- Real Losses
- Apparent Losses

Revenue Water

- Billed Exported Consumption
- Billed Metered Consumption
- Billed Unmetered Consumption
- Unbilled Metered Consumption
- Unbilled Unmetered Consumption

Non Revenue Water

- Unauthorized Consumption
- Billing & Accounting Errors
- Leakage on Transmission and/or Distribution Mains
- Leakage and Overflows at Utility's Storage Tanks
- Leakage on Service Connections
- Customer Meter Inaccuracies
- Unbilled Unmetered Consumption
- Unbilled Authorized Consumption
- Billed Unmetered Consumption
- Billed Metered Consumption
- Billed Authorized Consumption

- Unauthorized Consumption
- Billing & Accounting Errors
- Leakage on Transmission and/or Distribution Mains
- Leakage and Overflows at Utility's Storage Tanks
- Leakage on Service Connections
- Customer Meter Inaccuracies
- Unbilled Unmetered Consumption
- Unbilled Authorized Consumption
- Billed Unmetered Consumption
- Billed Metered Consumption
- Billed Authorized Consumption
How accurate is a brand new domestic meter?
How accurate is a brand new commercial meter?
How accurate is an old domestic meter?
How accurate is an old commercial meter?
Metering errors vary with flow rate

- New meter
- Leaks

Class B
Velocity meter
Metering errors vary with flow rate

15 l/h, 22.5 l/h, 3000 l/h

Flow rate (l/h)

Error (%)

Class C - PD

New meter
Metering errors also vary with time!!!

- Flow rate (l/h)
 - 30 l/h
 - 120 l/h
 - 3000 l/h

- Error (%)
 - New meter
 - Old meter

- Class B
 - Velocity meter

Leaks

Flow rate (l/h)
Finding real field performance of a meter

Error curve

Water consumption pattern

Weighted error
Understanding weighted error of a meter

- $-X\%$ weighted error means that every 100 litres consumed, X litres are not measured.

- It is strictly associated to:
 - One meter (or type of meter)
 - One customer (or type of customer)
Understanding weighted error of a meter

- If the weighted error of all installed meters is known then the Customer Meters Inaccuracies term is also known.

<table>
<thead>
<tr>
<th>System Input Volume</th>
<th>Water Losses</th>
<th>Authorized Consumption</th>
<th>Unbilled Authorized Consumption</th>
<th>Billed Authorized Consumption</th>
<th>Unbilled Metered Consumption</th>
<th>Billed Metered Consumption</th>
<th>Billed Unmetered Consumption</th>
<th>Revenue Water</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Non Revenue Water</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Customer Meter Inaccuracies

- Billing & Accounting Errors
- Leakage on Transmission and/or Distribution Mains
- Leakage and Overflows at Utility’s Storage Tanks
- Leakage on Service Connections

Unauthorized Consumption
Finding the error curve of water meters

- There are large differences between meter types

![Graph showing error curve for different flow rates]

- Error (%) vs. Flow rate (l/h)
Finding the error curve of water meters

- There are large differences between meter types
- Metering errors depend on the flow rate

Which flow rates do I test?

- Use standards (ISO 4064, AWWA)?
 - Minimum, Transition, Permanent, Maximum
- Other criteria
Selecting flow rates based on the standards

Class B – Qn 1.5 m³/h

- 30 l/h
- 120 l/h
- 1500 l/h
- 3000 l/h

Flow rate (l/h)
Selecting flow rates based on the standards

Class C – Qn 1.5 m³/h

Class B – Qn 1.5 m³/h
Selecting flow rates based on the standards

R100 – Q3 1.6 m³/h

R100 – Q3 2.5 m³/h
Selecting flow rates based on the standards

With the new ISO 4064:2006 there are too many options for domestic meters

Using standards to select testing flow rates is impractical!!!
Selecting flow rates based on the standards

Class B – Qn 1.5 m³/h
Re-constructiong the error curve

Class B – Qn 1.5 m³/h
Do you think these curves are the same?

Class B – Qn 1.5 m³/h
Example 1

- One meter was tested at two set of flow rates:
 - 30 l/h, 120 l/h, 750 l/h and 1500 l/h
 - 15 l/h, 60 l/h, 500 l/h and 1500 l/h

- The error curve was reconstructed from the information of the tests using two different methods

- The weighted error was calculated using the same consumption pattern
1st reconstruction method
2nd reconstruction method

![Graph showing the 2nd reconstruction method with error (%), Flow rate (l/h), Curve A1, Curve A2, and Starting flow rate.](image-url)
Calculating the weighted error

- From the same error curve and the same consumption pattern very different results are obtained!!

<table>
<thead>
<tr>
<th>Curve</th>
<th>Weighted Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detailed curve</td>
<td>-4.33%</td>
</tr>
<tr>
<td>1st reconstruction</td>
<td>-2.72%</td>
</tr>
<tr>
<td>2nd reconstruction</td>
<td>0.80%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curve</th>
<th>Weighted Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 l/h, 120 l/h, 750 l/h, 1500 l/h</td>
<td>-4.33%</td>
</tr>
<tr>
<td>1st reconstruction</td>
<td>-2.72%</td>
</tr>
<tr>
<td>2nd reconstruction</td>
<td>0.80%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Curve</th>
<th>Weighted Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 l/h, 60 l/h, 500 l/h, 1500 l/h</td>
<td>-3.75%</td>
</tr>
<tr>
<td>1st reconstruction</td>
<td>-3.75%</td>
</tr>
<tr>
<td>2nd reconstruction</td>
<td>-0.66%</td>
</tr>
</tbody>
</table>

Such differences are not acceptable!
Example 2
Weighted errors of new domestic meters

- Results for 10 different brands of domestic meters
 (meters were tested at 10 flow rates)

<table>
<thead>
<tr>
<th>Brand</th>
<th>Pattern 1</th>
<th>Pattern 2</th>
<th>Pattern 3</th>
<th>Pattern 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-3.09</td>
<td>-3.91</td>
<td>-2.11</td>
<td>-7.44</td>
</tr>
<tr>
<td>2</td>
<td>-1.35</td>
<td>-1.67</td>
<td>-0.85</td>
<td>-3.54</td>
</tr>
<tr>
<td>3</td>
<td>-2.55</td>
<td>-2.83</td>
<td>-1.72</td>
<td>-5.43</td>
</tr>
<tr>
<td>4</td>
<td>-6.13</td>
<td>-7.02</td>
<td>-5.24</td>
<td>-11.47</td>
</tr>
<tr>
<td>5</td>
<td>-5.26</td>
<td>-6.24</td>
<td>-4.16</td>
<td>-10.03</td>
</tr>
<tr>
<td>6</td>
<td>-3.99</td>
<td>-4.75</td>
<td>-3.18</td>
<td>-8.43</td>
</tr>
<tr>
<td>7</td>
<td>-0.04</td>
<td>-0.64</td>
<td>-0.03</td>
<td>-0.79</td>
</tr>
<tr>
<td>8</td>
<td>-2.84</td>
<td>-3.1</td>
<td>-2.12</td>
<td>-5.43</td>
</tr>
<tr>
<td>9</td>
<td>-0.1</td>
<td>-0.56</td>
<td>-0.02</td>
<td>-0.76</td>
</tr>
<tr>
<td>10</td>
<td>-0.11</td>
<td>-0.69</td>
<td>-0.08</td>
<td>-0.92</td>
</tr>
</tbody>
</table>
Weighted errors of new domestic meters

![Graph showing weighted errors of different meter brands](image-url)
How accurate is a brand new domestic meter?

Maybe now you do not give an answer so easily
IWA - Water balance

- **System Input Volume**
 - Authorized Consumption
 - Unbilled Authorized Consumption
 - Water Losses
 - Real Losses

- **Billed Authorized Consumption**
 - Billed exported consumption
 - Billed Metered Consumption
 - Unbilled Metered Consumption

- **Billed Unmetered Consumption**
 - Unbilled Unmetered Consumption
 - Unauthorized Consumption

- **Relevant Water**
 - Billing & Accounting Errors
 - Leakage on Transmission and/or Distribution Mains
 - Leakage and Overflows at Utility’s Storage Tanks
 - Leakage on Service Connections

- **Non Revenue Water**
 - Unbilled Unmetered Consumption
 - Unbilled Authorized Consumption
 - Unbilled Metered Consumption
 - Billed exported consumption
 - Real Losses
 - Apparent Losses
 - Authorized Consumption
 - Customer Meter Inaccuracies
Conclusions

- Calculated meter performance can dramatically change depending on the methodology used for the calculation.

- A standard methodology for calculating meters inaccuracies is needed. This include:
 - Selection of testing flow rates
 - Consumption patterns to be used
 - How errors should be weighted with consumption patterns

- Maybe standardization will not produce the most accurate results but figures will be comparable.
Systematic methodology to estimate apparent losses due to water meters inaccuracies